# Gravitational Wave is Coming to Earth!

Group 6: Tang Hin Fung
Chan Matthew

#### Contents

Origin of Gravitational Wave

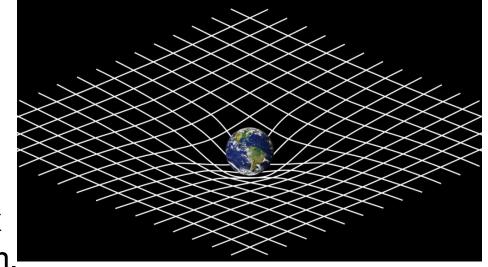
Experimental setup-LIGO Interferometer

GW simulation model

Observation and data analysis



# **Background History**


- In 1915 Einstein proposed "General Relativity (GR)"
  - -Describe gravity as curvature of spacetime

Einstein field equations

$$G_{\mu\nu}$$
 =  $8\pi T_{\mu\nu}$ 

Einstein Tensor: Describe spacetime curvature

Stress-Energy Tensor: Describe the density, flux of energy and momentum.



Based on General Relativity, Einstein predicted Gravitational wave(GW) exist but...

In 1936, Einstein and Nathan Rosen submitted a paper to "*Physical review*" which claimed gravitational wave could not exist, but it was rejected.



#### Question:

How does General Relativity predict Gravitational waves?

Main idea:

Add a small perturbation to flat spacetime.

# Linearized Gravity solutions

Starting Point.....

General Spacetime 
$$= \eta_{\mu\nu} + h_{\mu\nu}$$
A small perturbation of flat time

(Minkowski)Flat spacetime, no gravity involve

Physics behind:

Assuming that the waves produced by the sources are so weak that spacetime can be written as a small perturbation of flat spacetime.

# Next step...

Connection coefficient

$$\Gamma^{\sigma}_{\mu\nu}$$

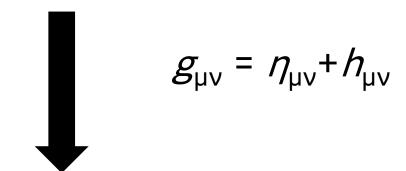
Riemann curvature tensor  $\,R^{
ho}_{\sigma\mu
u}$ 

$$R^{
ho}_{\sigma\mu
u}$$

Ricci tensor

$$R_{\sigma \nu}$$

After linearized gravity




$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$G_{\mu\nu}$$

## Connection coefficient

$$\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\sigma\alpha}(\partial_{\nu}g_{\alpha\mu} + \partial_{\mu}g_{\alpha\nu} - \partial_{\alpha}g_{\mu\nu})$$



$$\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2} \eta^{\sigma\alpha} (\partial_{\nu} h_{\alpha\mu} + \partial_{\mu} h_{\alpha\nu} - \partial_{\alpha} h_{\mu\nu})$$

#### Riemann curvature tensor

$$R_{\sigma\mu\nu}^{\rho} = \partial_{\mu}(\Gamma_{\nu\sigma}^{\rho}) - \partial_{\nu}(\Gamma_{\mu\sigma}^{\rho}) + \Gamma_{\nu\sigma}^{\gamma}\Gamma_{\mu\gamma}^{\rho} - \Gamma_{\mu\sigma}^{\delta}\Gamma_{\nu\delta}^{\rho}$$

$$\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2} \eta^{\sigma\alpha} (\partial_{\nu} h_{\alpha\mu} + \partial_{\mu} h_{\alpha\nu} - \partial_{\alpha} h_{\mu\nu})$$

$$R_{\sigma\mu\nu}^{\rho} = \frac{1}{2} \eta^{\rho\alpha} (\partial_{\mu} \partial_{\rho} h_{\alpha\nu} - \partial_{\mu} \partial_{\alpha} h_{\nu\sigma} - \partial_{\nu} \partial_{\sigma} h_{\alpha\mu} + \partial_{\nu} \partial_{\alpha} h_{\mu\sigma})$$

### Ricci tensor

$$R_{\sigma\mu\nu}^{\rho} = \frac{1}{2} \eta^{\rho\alpha} (\partial_{\mu} \partial_{\rho} h_{\alpha\nu} - \partial_{\mu} \partial_{\alpha} h_{\nu\sigma} - \partial_{\nu} \partial_{\sigma} h_{\alpha\mu} + \partial_{\nu} \partial_{\alpha} h_{\mu\sigma})$$



$$\Box \equiv \eta^{\mu lpha} \partial_{\mu} \partial_{lpha} \ h \equiv h^{\mu}_{\mu}$$

$$R_{\sigma\nu} = R_{\sigma\mu\nu}^{\mu} = \frac{1}{2} (\partial_{\mu}\partial_{\sigma}h_{\nu}^{\mu} + \partial_{\nu}\partial_{\alpha}h_{\sigma}^{\alpha} - \Box h_{\nu\sigma} - \partial_{\nu}\partial_{\sigma}h)$$

# Ricci scalar

$$R_{\sigma\nu} = \frac{1}{2} (\partial_{\mu} \partial_{\sigma} h_{\nu}^{\mu} + \partial_{\nu} \partial_{\alpha} h_{\sigma}^{\alpha} - \Box h_{\nu\sigma} - \partial_{\nu} \partial_{\sigma} h)$$



$$egin{aligned} egin{aligned} egin{aligned} & & & egin{aligned} & & & & eta \\ & & & & h & \equiv h_{\mu}^{\mu} \end{aligned}$$

$$R = R^{\nu}_{\nu} = \partial_{\mu}\partial_{\sigma}h^{\mu\sigma} - \Box h$$

### Einstein Tensor

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$$

$$h_{\alpha\beta} \equiv \bar{h}_{\alpha\beta} + \frac{1}{2} \eta_{\alpha\beta} h$$

$$R_{\sigma\nu} = R_{\sigma\mu\nu}^{\mu} = \frac{1}{2} (\partial_{\mu}\partial_{\sigma}h_{\nu}^{\mu} + \partial_{\nu}\partial_{\alpha}h_{\sigma}^{\alpha} - \Box h_{\nu\sigma} - \partial_{\nu}\partial_{\sigma}h)$$

$$R = R_{\nu}^{\nu} = \partial_{\mu}\partial_{\sigma}h^{\mu\sigma} - \Box h$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$G_{\mu\nu} \equiv \frac{1}{2} (\partial^{\mu}\partial_{\alpha}\overline{h}_{\alpha\nu} + \partial^{\alpha}\partial_{\nu}\overline{h}_{\mu\alpha} - \partial^{\alpha}\partial_{\alpha}\overline{h}_{\mu\nu} - \eta_{\mu\nu}\partial^{\alpha}\partial^{\beta}\overline{h}_{\alpha\beta})$$

# Lorenz Gauge transformation

$$G_{\mu\nu} \equiv \frac{1}{2} (\partial^{\mu}\partial_{\alpha}\overline{h}_{\alpha\nu} + \partial^{\alpha}\partial_{\nu}\overline{h}_{\mu\alpha} - \partial^{\alpha}\partial_{\alpha}\overline{h}_{\mu\nu} - \eta_{\mu\nu}\partial^{\alpha}\partial^{\beta}\overline{h}_{\alpha\beta})$$



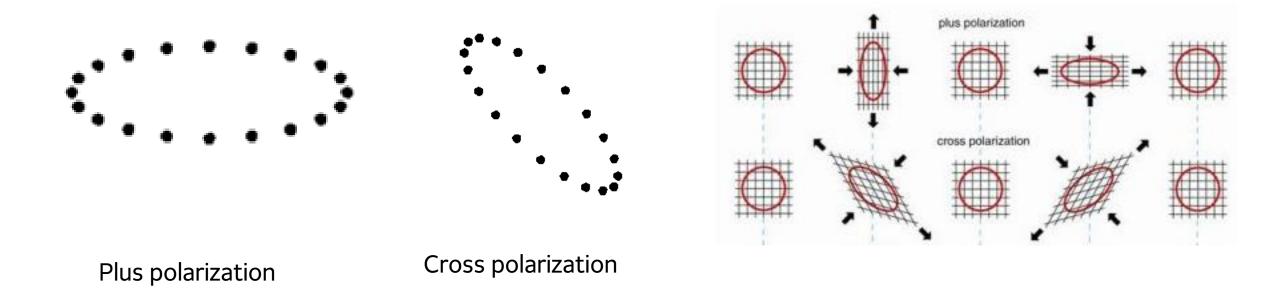
Lorenz Gauge condition:

$$\partial_{\beta} \bar{h}_{\alpha\beta} = 0$$

$$G_{\mu\nu} \equiv \frac{-1}{2} \eta_{\mu\nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha\beta}$$

### Gravitational Wave is indeed wave

#### Einstein field equations


$$G_{\mu\nu}$$
 =  $8\pi T_{\mu\nu}$ 

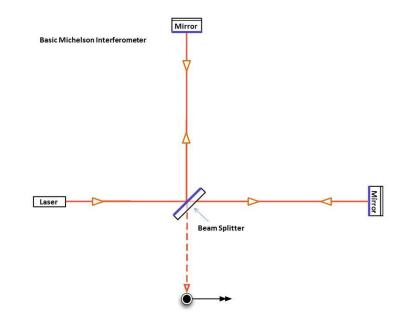
 $T_{\mu\nu}$  =0 (For flat spacetime)

$$G_{\mu
u} \equiv rac{-1}{2} \eta_{\mu
u} \partial^{lpha} \partial^{eta} ar{h}_{lphaeta}$$
 
$$\eta_{\mu
u} \partial^{lpha} \partial^{eta} ar{h}_{lphaeta} = 0$$

$$abla^2 ar{h}_{\alpha\beta} = rac{1}{c^2} rac{\partial^2 ar{h}_{\alpha\beta}}{\partial t^2} \quad ext{(Wave equation)}$$

# Polarization of gravitational wave: Plus and cross polarization

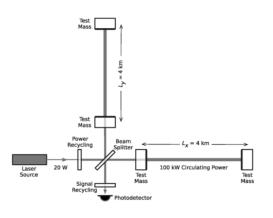



Gravitational Wave would stretch and compress spacetime in different direction.

# Experimental setup - LIGO interferometer

# What is Interferometer?

Interference + meter


- Michelson Interferometer
  - Splitting beams into 2 arms
  - Path difference
  - Two beams recombined
  - Forming constructive or destructive interference



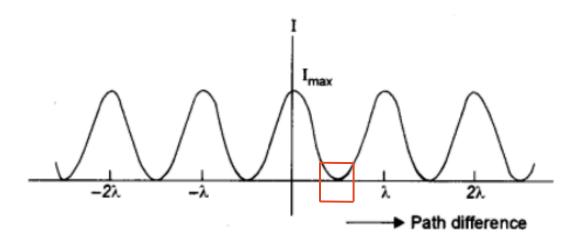
### How is GW detected?

No GW -> destructive interference

- GW -> stretch the arm length
  - Amplitude of GW is reflected by path difference
  - Start to have constructive interference
  - Intensity increase






# How Small is GW Amplitude?

• Strain of GW h:  $\sim 10^{-21}$ 

• 
$$\Delta L = Lh = n\lambda$$

• 
$$\lambda \approx 10^{-6}$$
,  $L \approx 10^3$ 

•  $n \ll 1$ 

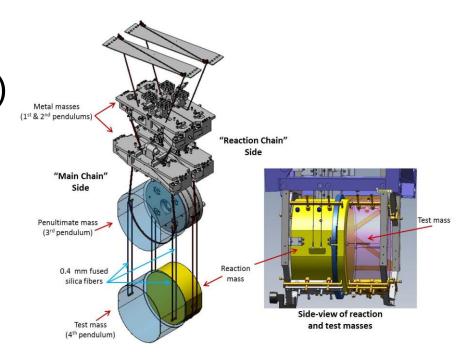


• Didn't finish a complete constructive interference

# Signal to Noise

Signal to noise ratio (SNR)

$$SNR \propto \frac{L\sqrt{P_{arm}}}{\lambda}h$$

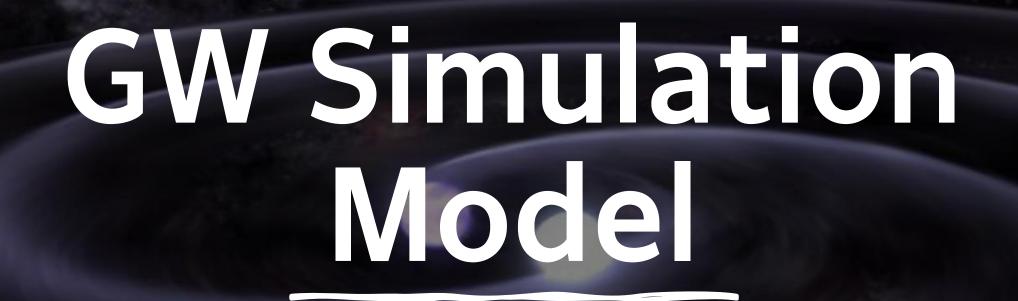

- L:cavity length
- $P_{arm}$ : laser power in the arms
- $\lambda$ : laser wavelength
- h: GW amplitude

# How LIGO Increases Sensitivity?

- 4km cavity length
  - light reflected for about 300 times
  - Indirectly increase arm length/path difference
- High laser power
  - Power recycling mirror: reflect light from interferometer back to the interferometer
  - increase sensitivity/resolving power
- Wavelength of laser light
  - Stable
  - Optical coating
  - Detector bandwidth and noise

# How LIGO Suppresses Noise?

- Ultra-High Vacuum (passive isolation)
  - Vibration of sound waves
  - Thermal isolation
- Optical Suspension (passive isolation)
  - quadruple-pendulum system
  - Large masses
- Control System (active isolation)
  - vibration-sensors sense frequencies of environmental vibrations
  - Counteracts the vibration

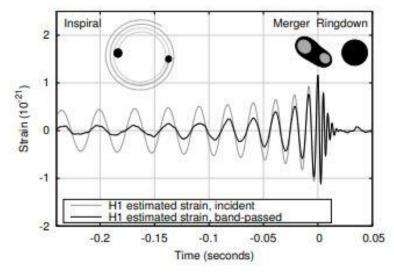



# LIGO on Earth

Control Experiment

- Hanford
- Livingston



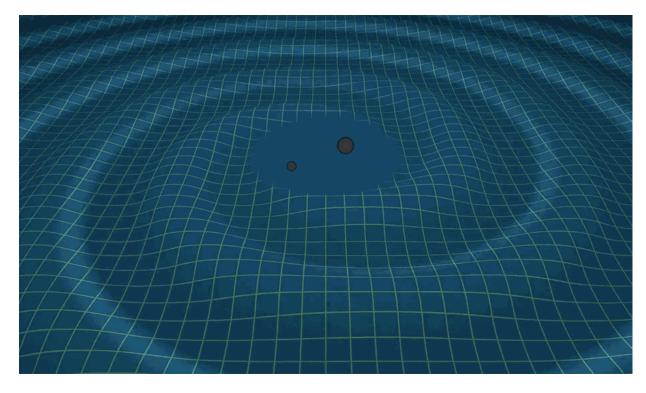



# Why We Need Simulation?

- Signal and Noise are mixed
- Target the signal frequency in experimental setup
- Use theoretical model to filtrate the signal

# Simulation Method

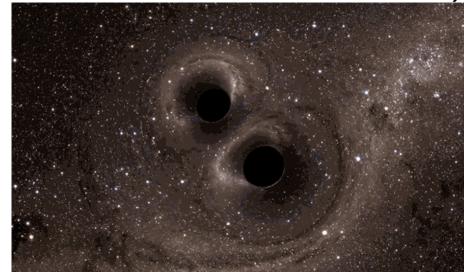
- Post Newtonian Approximation
  - Weak regime
  - Expand metric tensor in small parameters
- Numerical Relativity
  - Strong regime
  - Solving the Einstein Field Equation (PDE) by numerical method
  - 15 parameters:
    - Mass\*2
    - Spin\*6
    - Source position and reference time for the remaining




Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

# Observation and Data analysis

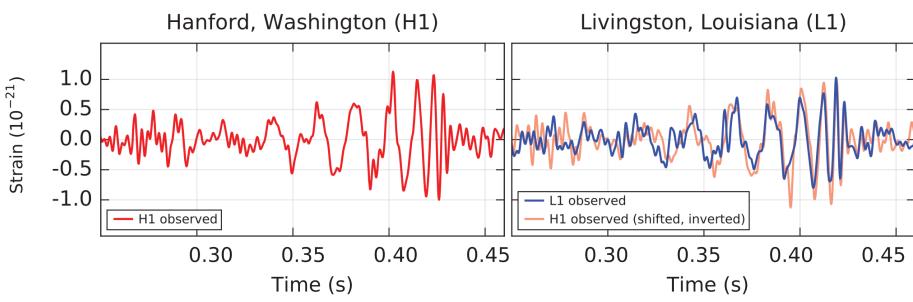
### First detection of GW


On September 14,2015. Two LIGO detectors simultaneously observed a Gravitational-Wave signal.



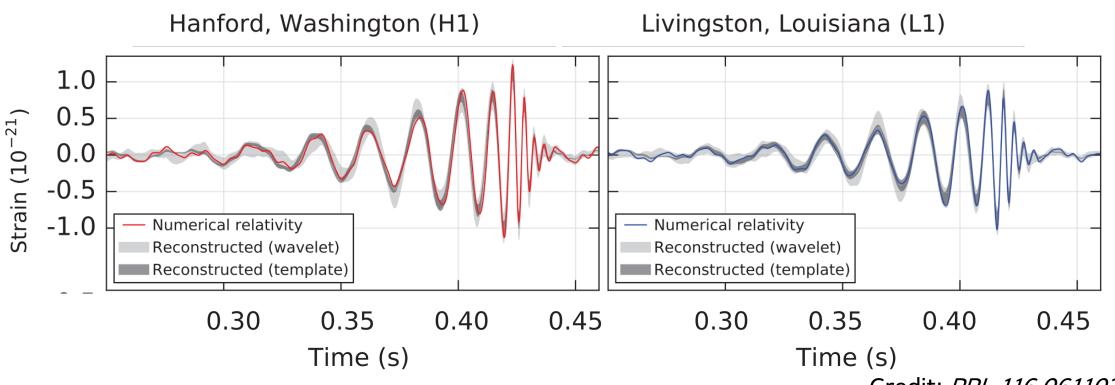
Credit: *LIGO/T. Pyle* 

#### Source


- Source: Binary Black hole Merge
- Distance: ~ 410 Mpc (1pc=3.26ly)
- Initial Black hole mass: ~36M⊙ and ~29M⊙
- Final black hole mass : ~62M⊙ (~3M⊙ c² radiated at GW)



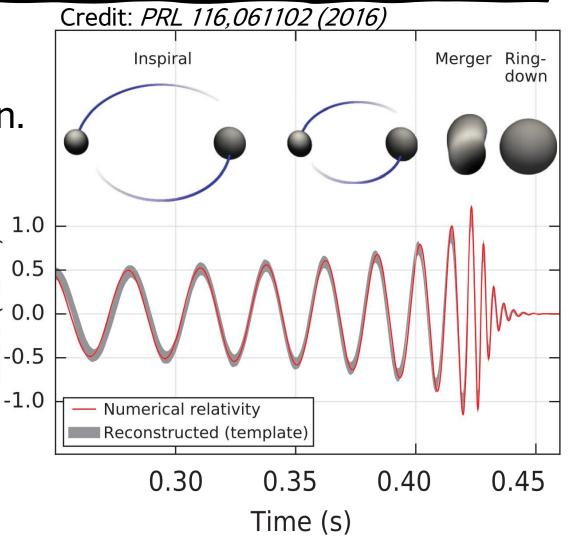
Credits: SXS Lensing


# Observation and Data analysis

#### Detected signal by two LIGO

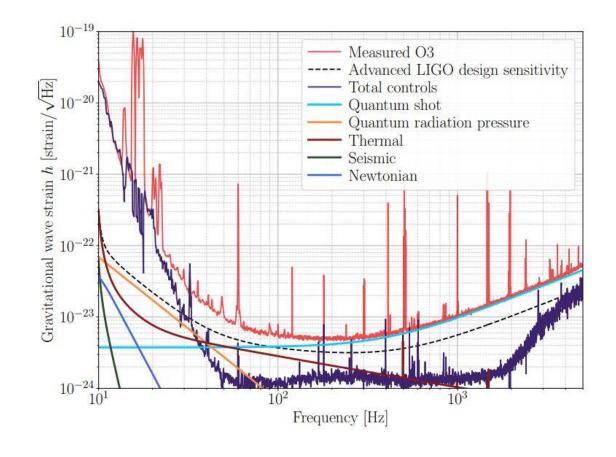


Credit: PRL 116,061102 (2016)


- Raw signal combines with noise
- Strain of the signal only had  $\sim 10^{-21}$

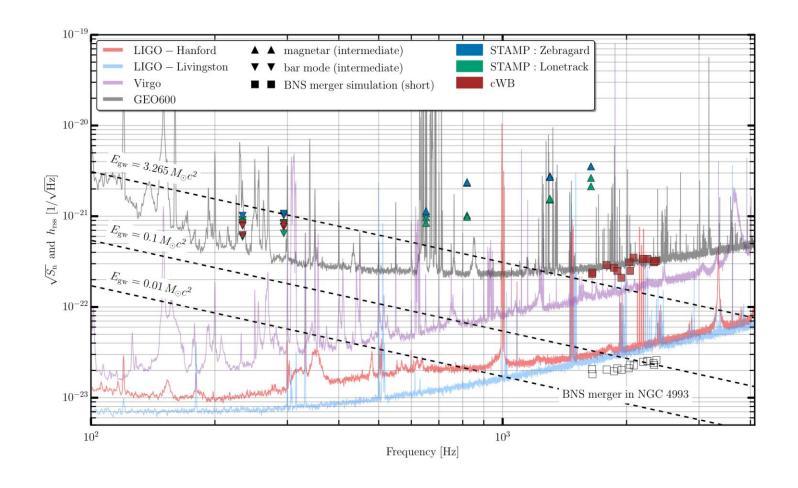


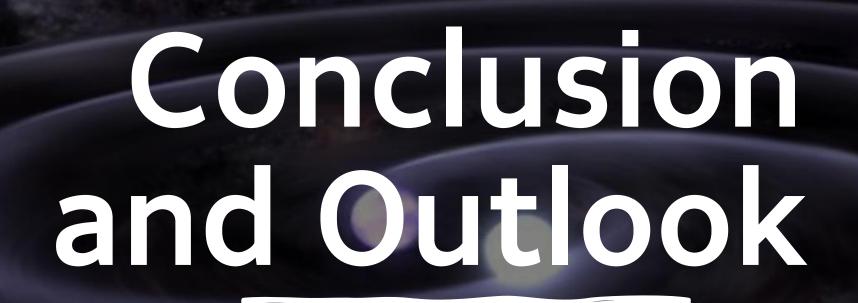
Credit: *PRL 116,061102 (2016)* 


The above graphs show numerical relativity stimulation.

- Each part of the signal represents a different situation.
  - In 0.2 sec, the signal increases in frequency and amplitude in 8 cycles from 35 to 150 Hz
  - To reach 75 Hz, two blackholes only ~350 km apart.




## What LIGO can detect?


- Seismic Noise (<20Hz)</li>
  - Vibration from the Earth
- Shot Noise (>450Hz)
  - Discrete properties of photon
- Target GW Signal for Binary black hole (~100Hz)



# What LIGO cannot detect?

- Binary Neutron Star Merger and Post-Merger
- 1k-4k Hz





### Conclusion

GW150914 event is the first direct observation of GW
 The first observation of a binary blackhole.
 The existence of GW has been proved for over 50 years
 The detected waveforms matches the prediction.

Gravitational Wave detection has completed the theory of general Relativity.

## Outlook

 Detection of GW has given us a new sight for observing the universe.

Other than relying EM radiation for detection only.

 More events such as neutron stars' inspiral could be observed.